Publications

ResearcherID: link
Google Scholar: link

2020

  1. Tetrahedrality Dictates Dynamics in Hard Sphere Mixtures
    S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, Physical Review Letters, 124, 208005, (2020). (arXiv)
  2. Rotational and translational dynamics in dense fluids of patchy particles
    S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, Journal Of Chemical Physics, 152, 084501, (2020). (arXiv)
  3. High antisite defect concentrations in hard-sphere colloidal Laves phases
    B. van der Meer, F. Smallenburg, M. Dijkstra, and L. Filion, Soft Matter (2020).
  4. Infinite-pressure phase diagram of binary mixtures of (non) additive hard disks
    E. Fayen, A. Jagannathan, G. Foffi, and F. Smallenburg, Journal Of Chemical Physics, 152, 204901, (2020). (arXiv)
  5. Autonomously revealing hidden local structures in supercooled liquids
    E. Boattini, S. Marín-Aguilar, S. Mitra, G. Foffi, F. Smallenburg, and L. Filion, Submitted (2020).

2019

  1. Slowing down supercooled liquids by manipulating their local structure
    S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, Soft Matter, 15, 9886, (2019).
  2. Phase diagram of two-dimensional colloids with Yukawa repulsion and dipolar attraction
    N. P. Kryuchkov, F. Smallenburg, A. V. Ivlev, S. O. Yurchenko, and H. Löwen, Journal Of Chemical Physics, 150, 104903, (2019).
  3. Pressure, surface tension, and curvature in active systems: A touch of equilibrium
    R. Wittmann, F. Smallenburg, and J. M. Brader, Journal Of Chemical Physics, 150, 174908, (2019). (arXiv)

2018

  1. Liquid crystals of hard rectangles on flat and cylindrical manifolds
    C. E. Sitta, F. Smallenburg, R. Wittkowski, and H. Löwen, Physical Chemistry Chemical Physics, 20, 5285, (2018). (arXiv)
  2. Static structure of active Brownian hard disks
    N. de Macedo Biniossek, H. Löwen, T. Voigtmann, and F. Smallenburg, Journal Of Physics: Condensed Matter, 30, 074001, (2018). (arXiv)
  3. Revealing a Vacancy Analog of the Crowdion Interstitial in Simple Cubic Crystals
    B. van der Meer, R. van Damme, M. Dijkstra, F. Smallenburg, and L. Filion, Physical Review Letters, 121, 258001, (2018).
  4. Neural-network-based order parameters for classification of binary hard-sphere crystal structures
    E. Boattini, M. Ram, F. Smallenburg, and L. Filion, Molecular Physics, 116, 3066, (2018).

2017

  1. Negative resistance for colloids driven over two barriers in a microchannel
    U. Zimmermann, H. Löwen, C. Kreuter, A. Erbe, P. Leiderer, and F. Smallenburg, Submitted (2017).
  2. Phase and vacancy behaviour of hard "slanted" cubes
    R. van Damme, B. van der Meer, J. van den Broeke, F. Smallenburg, and L. Filion, Journal Of Chemical Physics, 147, 124501, (2017).
  3. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory
    R. Wittmann, C. E. Sitta, F. Smallenburg, and H. Löwen, Journal Of Chemical Physics, 147, 134908, (2017).
  4. Low-temperature crystal structures of the hard core square shoulder model
    A. Gabriëlse, H. Löwen, and F. Smallenburg, Materials, 10, 1280, (2017). (arXiv)
  5. Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
    B. van der Meer, E. Lathouwers, F. Smallenburg, and L. Filion, Journal Of Chemical Physics, 147, 234903, (2017).

2016

  1. Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation
    U. Zimmermann, F. Smallenburg, and H. Löwen, Journal Of Physics: Condensed Matter, 28, 244019, (2016). (arXiv)
  2. Close packing of rods on spherical surfaces
    F. Smallenburg, and H. Löwen, Journal Of Chemical Physics, 144, 164903, (2016). (arXiv)
  3. Crystals of Janus colloids at various interaction ranges
    Z. Preisler, T. Vissers, F. Smallenburg, and F. Sciortino, Journal Of Chemical Physics, 145, 064513, (2016).
  4. Hard rectangles near curved hard walls: Tuning the sign of the Tolman length
    C. E. Sitta, F. Smallenburg, R. Wittkowski, and H. Löwen, Journal Of Chemical Physics, 145, 204508, (2016). (arXiv)

2015

  1. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
    B. de Nijs, S. Dussi, F. Smallenburg, J. D. Meeldijk, D. J. Groenendijk, L. Filion, A. Imhof, A. van Blaaderen, and M. Dijkstra, Nature Materials, 14, 56, (2015).
  2. Swim pressure on walls with curves and corners
    F. Smallenburg, and H. Löwen, Physical Review E, 92, 032304, (2015). (arXiv)
  3. Crystallization and reentrant melting of charged colloids in nonpolar solvents
    T. Kanai, N. Boon, P. J. Lu, E. Sloutskin, A. B. Schofield, F. Smallenburg, R. van Roij, M. Dijkstra, and D. A. Weitz, Physical Review E, 91, 030301, (2015).
  4. Long-ranged oppositely charged interactions for designing new types of colloidal clusters
    A. F. Demirörs, J. C. Stiefelhagen, T. Vissers, F. Smallenburg, M. Dijkstra, A. Imhof, and A. van Blaaderen, Physical Review X, 5, 021012, (2015).
  5. Tuning the liquid-liquid transition by modulating the hydrogen-bond angular flexibility in a model for water
    F. Smallenburg, and F. Sciortino, Physical Review Letters, 115, 015701, (2015). (arXiv)
  6. Liquid--Liquid Phase Transitions in Tetrahedrally Coordinated Fluids via Wertheim Theory
    F. Smallenburg, L. Filion, and F. Sciortino, Journal Of Physical Chemistry B, 119, 9076, (2015).
  7. Phase diagram of the ST2 model of water
    F. Smallenburg, P. H. Poole, and F. Sciortino, Molecular Physics, 113, 2791, (2015). (arXiv)

2014

  1. Equilibrium phases of one-patch colloids with short-range attractions
    Z. Preisler, T. Vissers, G. Munaò, F. Smallenburg, and F. Sciortino, Soft Matter, 10, 5121, (2014).
  2. An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields
    H. R. Vutukuri, F. Smallenburg, S. Badaire, A. Imhof, M. Dijkstra, and A. van Blaaderen, Soft Matter, 10, 9110, (2014).
  3. Gels of DNA nanostars never crystallize
    L. Rovigatti, F. Smallenburg, F. Romano, and F. Sciortino, Acs Nano, 8, 3567, (2014).
  4. Cooperative polymerization of one-patch colloids
    T. Vissers, F. Smallenburg, G. Munaò, Z. Preisler, and F. Sciortino, Journal Of Chemical Physics, 140, 144902, (2014).
  5. Erasing no-man’s land by thermodynamically stabilizing the liquid--liquid transition in tetrahedral particles
    F. Smallenburg, L. Filion, and F. Sciortino, Nature Physics, 10, 653, (2014).

2013

  1. Cluster formation in one-patch colloids: low coverage results
    G. Munaò, Z. Preisler, T. Vissers, F. Smallenburg, and F. Sciortino, Soft Matter, 9, 2652, (2013).
  2. Predicting crystals of Janus colloids
    T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, and F. Sciortino, Journal Of Chemical Physics, 138, 164505, (2013).
  3. Colloidal clusters by using emulsions and dumbbell-shaped particles: Experiments and simulations
    B. Peng, F. Smallenburg, A. Imhof, M. Dijkstra, and A. van Blaaderen, Angewandte Chemie International Edition, 52, 6709, (2013).
  4. Phase diagram of one-patch colloids forming tubes and lamellae
    Z. Preisler, T. Vissers, F. Smallenburg, G. Munaò, and F. Sciortino, Journal Of Physical Chemistry B, 117, 9540, (2013).
  5. Gelling by heating
    S. Roldán-Vargas, F. Smallenburg, W. Kob, and F. Sciortino, Scientific Reports, 3, 2451, (2013). (arXiv)
  6. Liquids more stable than crystals in particles with limited valence and flexible bonds
    F. Smallenburg, and F. Sciortino, Nature Physics, 9, 554, (2013). (arXiv)
  7. Patchy particle model for vitrimers
    F. Smallenburg, L. Leibler, and F. Sciortino, Physical Review Letters, 111, 188002, (2013).
  8. Understanding tetrahedral liquids through patchy colloids
    I. Saika-Voivod, F. Smallenburg, and F. Sciortino, Journal Of Chemical Physics, 139, 234901, (2013). (arXiv)
  9. Phase diagram of a reentrant gel of patchy particles
    S. Roldán-Vargas, F. Smallenburg, W. Kob, and F. Sciortino, Journal Of Chemical Physics, 139, 244910, (2013). (arXiv)

2012

  1. Spiers Memorial Lecture: Effect of interaction specificity on the phase behaviour of patchy particles
    N. Dorsaz, L. Filion, F. Smallenburg, and D. Frenkel, Faraday Discussions, 159, 9, (2012).
  2. Surface roughness directed self-assembly of patchy particles into colloidal micelles
    D. J. Kraft, R. Ni, F. Smallenburg, M. Hermes, K. Yoon, D. A. Weitz, A. van Blaaderen, J. Groenewold, M. Dijkstra, and W. K. Kegel, Proceedings Of The National Academy Of Sciences, 109, 10787, (2012).
  3. Vacancy-stabilized crystalline order in hard cubes
    F. Smallenburg, L. Filion, M. Marechal, and M. Dijkstra, Proceedings Of The National Academy Of Sciences, 109, 17886, (2012). (arXiv)
  4. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field
    F. Smallenburg, H. R. Vutukuri, A. Imhof, A. van Blaaderen, and M. Dijkstra, Journal Of Physics: Condensed Matter, 24, 464113, (2012).

2011

  1. Phase diagrams of colloidal spheres with a constant zeta-potential
    F. Smallenburg, N. Boon, M. Kater, M. Dijkstra, and R. van Roij, Journal Of Chemical Physics, 134, 074505, (2011). (arXiv)
  2. Measuring colloidal forces from particle position deviations inside an optical trap
    D. El Masri, P. van Oostrum, F. Smallenburg, T. Vissers, A. Imhof, M. Dijkstra, and A. van Blaaderen, Soft Matter, 7, 3462, (2011).
  3. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition
    R. Ni, F. Smallenburg, L. Filion, and M. Dijkstra, Molecular Physics, 109, 1213, (2011).

2010

  1. Phase diagram of colloidal spheres in a biaxial electric or magnetic field
    F. Smallenburg, and M. Dijkstra, Journal Of Chemical Physics, 132, 204508, (2010).

2009

  1. Efficient method for predicting crystal structures at finite temperature: Variable box shape simulations
    L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, and M. Dijkstra, Physical Review Letters, 103, 188302, (2009).

2008

  1. Universality class of the pair contact process with diffusion
    F. Smallenburg, and G. Barkema, Physical Review E, 78, 031129, (2008). (arXiv)